1, −2, 3, −4, 5, −6, … hədləri sadə bir sıra əmələ gətirdiyi üçün, sürüşdürmə və hədbəhəd cəmləmə üsullarından istifadə edərək, 1 − 2 + 3 − 4 + … ardıcıllığı hər hansısa yekun qiymət verəcək formaya gətirilə bilər. İxtiyari s ədədi üçün s = 1 − 2 + 3 − 4 + … bərabərliyi yazıla bilirsə, aşağıdakı tənzimləmələr s = 1⁄4 bərabərliyini göstərmiş olur:
4s = (1-2+3-4+5-6+...)+(1-2+3-4+5-6+...)+(1-2+3-4+5-6+...)+(1-2+3-4+5-6+...)
= (1-2+3-4+5-6+...)+1+(-2+3-4+5-6+...)+1+(-2+3-4+5-6+...)+1-2+(3-4+5-6+...)
= (1-2+3-4+5-6+...)+1+(-2+3-4+5-6+...)+1+(-2+3-4+5-6+...)-1+(3-4+5-6+...)
= (1+1-1)+(1-2-2+3)+(-2+3+3-4)+(3-4-4+5)+(-4+5+5-6)+...
= (1)+(0)+(0)+(0)+(0)+...
= 1
və
s = 1⁄4
0 Yorumlar